级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2011-05-06 12:20

 高聚物/纳米复合材料技术进展及发展前景(2)

二、高聚物/纳米复合材料的技术进展
  对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳
米复合材料分为以下几类:
    1、高聚物/粘土纳米复合材料
  由于层状无机物如粘土、云母、V2O5、MoO3、层状金属盐等在一定驱动力作用下能
碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,可容纳单体和聚合物分子;它
不仅可让聚合物嵌入夹层,形成"嵌入纳米复合材料",而且可使片层均匀分散于聚合物
中形成"层离纳米复合材料"。其中粘土易与有机阳离子发生离子交换反应,具有亲油性
甚至可引入与聚合物发生反应的官能团来提高两相粘结,因而研究较多,应用也较广。
其制备的技术方式有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制
成"嵌入纳米复合材料",而剥离法则是采用一些手段对粘土片层直接进行剥离,形成"层
离纳米复合材料"。由于插层法研究工作比较成熟,应用也较多,因而本文主要对该方法
进行介绍。
  根据插层形式的不同又可以分为以下几种:
  (1)插层聚合
    插层聚合即将单体先嵌入片层中,再在热光引发剂等作用下聚合。此法可分为"一步
法"和"二步法"。"二步法"为将粘土的插层膨胀处理与处理后粘土与聚合物单体的聚合分
为两步进行。这种方法的缺点是,粘土的膨胀化处理过程需增加设备,耗费大量的时间
和能量用于干燥和破碎,导致生产成本上升,生产效率下降;另一个缺点是处理后的粘
土与聚合物熔体的混合物缺少流动性,使得粘土不易均匀分散在聚合物单体中。这就导
致了熔体缩聚工序的困难和材料性能的下降。因此,只有无机填料与聚合物基体有强相
互作用,并达到纳米尺度的分散,才可能获得性能优异的有机/无机纳米复合材料。为解
决此问题,人们发明了"一步法"制备聚合物/粘土纳米复合材料,即将粘土阳离子交换反
应、聚合物单体插层后的粘土与聚合物单体共聚合在反应器内一次完成。使粘土通过库
仑力与聚合物基体结合并以纳米尺度均匀分散在聚合物基体中,制备成高性能的聚合物/
粘土纳米复合材料。
  (2)溶液或乳液插层
  溶液或乳液插层即通过溶液或乳液,将聚合物嵌入片层中。该方法的关键是寻找合
适的单体和相容的聚合物粘土矿溶剂体系。对于一些高性能聚合物如聚苯硫醚,则很难
找到溶剂,因此该法对这些聚合物有一定局限性。
  (3)熔体插层
  熔体插层即将插层剂插入到准二维硅酸盐粘土材料片层间使粘土片层撑开,进而依
靠高分子链同插层剂有机基团间的相互作用及螺杆的剪切力将高分子链插入到粘土片层
间并将片层解离,使粘土达到纳米尺度的均匀分散,形成高分子聚合物/粘土纳米复合材
料。与插层聚合法相比,该法不需溶剂、耗时短、操作简单、效率高、适合大多数聚合
物、易于工业化应用,且性能与原位插层聚合材料相当。但在对聚醚酰亚胺/粘土等高性
能聚合物/粘土纳米复合材料体系的研究过程中人们发现,为提高粘土与聚合物相容性而
对粘土进行的有机化处理不能承受熔体插层的高温,因而该法对高熔点聚合物的应用还
有待深入研究。
  插层法工艺简单、原料来源丰富、廉价。片层无机物只是一维方向上处于纳米级,
粒子不易团聚,分散也较容易。作为结构材料,聚合物/粘土纳米复合材料的物理学性能
与常规聚合物基复合材料相比具有很多优点,得到的复合材料往往具有十分优异的耐热
性及阻隔性。该法的关键是对片层插层前的处理,利用插层剂建立粘土与高分子聚合物
的连接桥梁。烷基铵盐是最常用的插层剂,也有用其它有机盐或中性分子类衍生物改性
的。不同的聚合物应选用不同的插层剂,不同的加工方法所选用的插层粘土也是有区别
的。应值得注意的是制备纳米级蒙脱土的膨润土,应是蒙脱石含量>95%。自然界很难找
到这样的原矿,需要提纯获得。以往一些搞聚合物/粘土纳米材料的研究人员,由于选用
的蒙脱石含量仅达85%-90%,其中10%-15%是粒子较粗的杂质,又没有进行有效的提纯
处理,最终制作的纳米聚合物材料的性能实际上大打折扣。因此,在研究及生产中对粘
土的采选应加以重视。截止到2003年,高聚物/粘土纳米复合材料已经获得了大批量的生
产与应用。我国中科院化学所工程塑料国家实验室采用天然蒙脱土作为分散相,将硅酸
盐原有结构解离成厚度为1nm,长宽约为100nm的片层均匀分散在聚合物中,实现了使粘
土片层在聚合物中的纳米级分散,成功地开发了PA6/粘土纳米复合材料及PET/粘土纳米
复合材料,在汽车、食品、轻工等许多领域获得了应用。同时,PA6/粘土纳米复合材料
在聚酰胺技术开发中心基地--岳阳石化总厂研究院中试开车成功,产品性能指标均达
到国外同类产品水平,表明我国高聚物/粘土纳米复合材料在生产和应用上取得了很大进
展。
    2、高聚物/刚性纳米粒子复合材料
  用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可
行性方法。随着无机粒子微细化技术和粒子表面处理技术的发展,特别是近年来纳米级
无机粒子的出现,塑料的增韧改性彻底冲破了以往在塑料中加入橡胶类弹性体的做法,
而弹性体韧性往往是以牺牲材料宝贵的刚性、尺寸稳定性、耐热性为代价的。
  从复合材料的观点出发,若粒子刚硬且与基体树脂结合良好,刚性无机粒子也能承
受拉伸应力,起到增韧增强作用。对于超微无机粒子增韧改性机理一般认为:
  (1)刚性无机粒子的存在产生应力集中效应,易引发周围树脂产生微开裂,吸收一
定的变形功。
  (2) 刚性粒子的存在使基体树脂裂纹扩展受阻和钝化,最终终止裂纹不致发展为
破坏性开裂。
  (3)随着填料的微细化,粒子的比表面积增大,因而填料与基体接触面积增大,材
料受冲击时,由于刚性纳米粒子与基体树脂的泊松比不同,会产生更多的微开裂,吸收
更多的冲击能并阻止材料的断裂。但若填料用量过大,粒子过于接近,微裂纹易发展成
宏观开裂,体系性能变差。
  采用纳米刚性粒子填充高聚物树脂,不仅会使材料韧性、强度方面得到提高,而且
其性能价格比也将是其它材料不能比拟的。另外由于某些工程塑料价格较高,人们希望
尽量利用加工及生产过程中的二次料,但热塑性树脂经二次加工后各种性能均会有不同
程度的下降,利用刚性纳米粒子对废料进行一定的改性后可有效提高热塑性工程塑料的
废料利用率和降低成本,从而可缓解资源短缺以及环境污染等问题。以CaCO3、SiO2等为
代表的高聚物/刚性纳米粒子复合材料已经获得了广泛的生产和应用。截止到2003年,市
场上很多纳米塑料产品都是以这类材料为基础的。
    3、高聚物/碳纳米管复合材料
  碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其性能远优于现今
普遍使用的玻璃纤维。其主要用途之一是作为聚合物复合材料的增强材料。
  碳纳米管基本上可分为单壁型和多壁型两类。虽然他们乍看起来非常相似,但其制
作方法和性能不尽相同。纳米管的结构决定它们是具有金属性还是具有半导体性质。大
约三分之二的单壁纳米管属于半导体型,三分之一属金属型。至于多壁纳米管,由于各
层壳的性能的叠加,难以做出明显区别,但大体上是金属型。
  碳纳米管的力学性能相当突出。现已测出多壁纳米管的平均弹性模量为1.8TPa。碳
纳米管的强度比弹性模量实验值为30-50GPa。尽管碳纳米管的拉伸强度如此之高,但它
们的脆性不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形
时才会断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材
料高一个数量级。
  在电性能方面,碳纳米管用作聚合物的填料具有独特的优势。加入少量碳纳米管即
可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米
管有高的长径比,因此其体积含量可比球状碳黑减少很多。多壁碳纳米管的平均长径比
约为1000;同时,由于纳米管的本身长度极短而且柔曲性好,它们填入聚合物基体时不
会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中
含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。
  碳纳米管已经在一些国家获得实际应用,例如美国RTP公司开发了一系列纳米管配混
料,截止到2003年,可供的配混料类型有聚烯烃、聚酰胺、聚碳酸脂/ABS混合料、聚苯
乙烯、聚碳酸脂、聚酯、聚苯硫醚、聚醚酰亚胺和聚醚醚酮,其它聚合物共混料也在开
发之中。用于航天工业中的聚合物,在飞行时外部气流与一般材料(如玻璃纤维)增强
的树脂之间产生的摩擦常引起静电而干扰无线通讯。用碳纳米管增强工程塑料将可以在
大幅度提高基体树脂力学性能的同时解决这一问题。美国国家航空与宇宙航行局(NASA
)和休斯敦的Rice大学已在准备碳纳米管在航天领域与聚合物复合的首批应用。
  4、高聚物/金属(金属氧化物)纳米粉复合材料
  金属或金属氧化物纳米粉往往具备常规材料没有的特性。如果用这些纳米材料与高
有广阔的发展空间。
  金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可
作为军用高性能毫米波隐形材料、可见光-红外线隐形材料和结构式隐形材料,以及手机
辐射隐蔽材料。另外,铁、钴、镍纳米粉有相当好的磁性能;铜纳米粉末的导电性优良
;氧化锌纳米粉体具有优良的抗菌性能。用它们与高聚物复合将可以给高聚物树脂带来
许多新的功能,使其能更广泛地应用于军事、航空航天、电子等高、精、尖产业及传统
产业的技术进步和升级换代,服务于社会的进步与发展。

分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。